На правах рукописи

Гафуров Зуфар Нафигуллович

# ПИНЦЕРНЫЕ КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ С НЕСИММЕТРИЧНЫМИ ФОСФОР- И АЗОТСОДЕРЖАЩИМИ ЛИГАНДАМИ: СИНТЕЗ И ПРИМЕНЕНИЕ В ГОМОГЕННОМ КАТАЛИЗЕ

Специальность 02.00.08 – Химия элементоорганических соединений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Институте органической и физической химии им. А.Е. Арбузова – обособленном структурном подразделении Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр Казанский научный центр Российской академии наук»

| Научный руководитель:     | доктор химических наук, профессор РАН<br><b>Яхваров Дмитрий Григорьевич</b>                                                                                                                                                                                                                                                          |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Официальные<br>оппоненты: | доктор химических наук, профессор РАН<br>Белкова Наталия Викторовна<br>ведущий научный сотрудник лаборатории гидридов<br>металлов Федерального государственного бюджетного<br>учреждения науки Институт элементоорганических<br>соединений им. А.Н. Несмеянова Российской академии<br>наук, г. Москва                                |  |  |  |
|                           | доктор химических наук<br>Артемьев Александр Викторович<br>ведущий научный сотрудник лаборатории металл-<br>органических координационных полимеров Федерального<br>государственного бюджетного учреждения науки Институт<br>неорганической химии им. А.В. Николаева Сибирского<br>отделения Российской академии наук, г. Новосибирск |  |  |  |
| Ведущая организация:      | Федеральное государственное бюджетное учреждение<br>науки Институт металлоорганической химии им. Г.А.<br>Разуваева Российской академии наук, г. Нижний Новгород                                                                                                                                                                      |  |  |  |

Защита диссертации состоится <u>13 мая 2020 года в 14 часов 30 минут</u> на заседании диссертационного совета Д 022.004.02 при Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» по адресу: 420088, г. Казань, ул. Акад. Арбузова, д. 8, ИОФХ им. А.Е. Арбузова – обособленное структурное подразделение ФИЦ КазНЦ РАН, конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке ИОФХ им. А.Е. Арбузова – обособленного структурного подразделения ФИЦ КазНЦ РАН и на сайте http://www.iopc.ru/.

Отзывы на автореферат в двух экземплярах просим присылать по адресу: 420088, г. Казань, ул. Акад. Арбузова, д. 8, ИОФХ им. А.Е. Арбузова, ученому секретарю совета, е-mail: toropchina@iopc.ru

Автореферат разослан «\_\_\_» марта 2020 г.

Учёный секретарь диссертационного совета, кандидат химических наук

10400

Торопчина А.В.

## ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность темы исследования и степень её разработанности.

Одной из основных задач современной металлоорганической химии является разработка новых каталитических систем и материалов с заранее заданными практически полезными свойствами. Варьирование природы лиганда в комплексах переходных металлов путем использования соединений различной природы, в том числе хелатирующих, приводит к значительному изменению свойств металлокомплексов, включая их стабильность и реакционную способность. Среди многочисленных лигандов, полученных за последние десятилетия, все большее значение приобретают лиганды пинцерного (клешневидного) типа благодаря их особым характеристикам и способности «настраивать» электронные и стерические свойства образованных ими комплексов. Стоит отметить, что, в то время как симметричные пинцерные лигандные системы приводят к образованию более стабильных комплексов, несимметричные аналоги придают металлокомплексам более высокую реакционную способность и активность в катализе, главным образом благодаря лабильности плеча лиганда.

Химия пинцерных комплексов переходных металлов переживает в настоящее время период интенсивного развития благодаря их уникальным каталитическим свойствам. Количество публикаций по данной теме достигает нескольких тысяч и продолжает быстро увеличиваться. В связи с обнаружением мощного каталитического потенциала комплексов переходных металлов на основе лигандов пинцерного типа в различных химических превращениях в последние несколько лет отчетливо наблюдается тенденция к увеличению общего количество статей, связанных с данными лигандами.

Каталитические системы на основе пинцерных комплексов переходных металлов продемонстрировали беспрецедентные активности в таких процессах, как реакции гомо- и кросс-сочетания (Сузуки-Мияура, Кумада-Корриу, Негиши и другие), реакции гидросилилирования, реакции олиго- и полимеризации ненасыщенных углеводородов и ряде других. Однако в настоящее время актуальной задачей является поиск новых систем, обладающих более высокими показателями эффективности в тех или иных превращениях. Ввиду высокой активности и селективности в катализе использование пинцерных металлоорганических комплексов на основе несимметричных лигандов, представляет собой привлекательное решение данной задачи.

Настоящая работа посвящена синтезу новых несимметричных пинцерных комплексов переходных металлов и исследованию их каталитической активности в реакции олигомеризации этилена, кросс-сочетании фенилборной кислоты с арилгалогенидами и восстановлении углекислого газа.

#### Цель диссертационной работы:

Синтез новых комплексов переходных металлов с несимметричными фосфор- и азотсодержащими пинцерными лигандами, исследование их строения и каталитической активности.

Согласно поставленной цели, выделяются следующие задачи:

- 1. Синтез новых несимметричных пинцерных лигандов PCN, NNC и NNN типов и комплексов переходных металлов (никеля, палладия, циркония и гафния) на их основе.
- 2. Исследование структуры, электрохимических свойств и каталитической активности в процессе олигомеризации этилена несимметричных пинцерных комплексов никеля

(II) на основе PCN лиганда, содержащего дитретбутилфосфиновую и пиразолильную группы.

- 3. Изучение каталитической активности *N*-гетероциклических карбеновых комплексов палладия (II) на основе NNC лиганда в реакции кросс-сочетания Сузуки-Мияура.
- 4. Исследование структуры и каталитической активности полученных бензимидазолпиридиламидных комплексов циркония (IV) и гафния (IV) в процессе восстановления углекислого газа.

# Методы исследования.

Состав и строение новых соединений устанавливались с помощью спектральных методов (ИК-, ЯМР-, масс-спектроскопия), рентгеноструктурного анализа и элементного анализа. Для изучения электрохимических свойств полученных комплексов были использованы методы циклической вольтамперометрии и спектроскопии электронного парамагнитного резонанса. Каталитические испытания были проведены с использованием аппаратуры Шленка. Идентификация и определение выхода продуктов реакций олигомеризации этилена, кросс-сочетания Сузуки-Мияура и восстановления углекислого газа установлено с помощью газовой хромато-масс-спектрометрии.

# Научная новизна и практическая ценность работы.

- Синтезированы и охарактеризованы новые несимметричные пинцерные комплексы переходных металлов состава [Ni( $k^3$ -PCN)X], где PCN = 1-(3-((ди-трет-бутилфосфино)метил)фенил)-1H-пиразол, X = F, Cl, Br, I; [Pd( $k^3$ -NNC<sub>c</sub>)Cl]X, где NNC<sub>c</sub> = 3-(6-(1H-пиразол-1-ил)пиридин-2-ил)-1-(2,6-диизопропилфенил)-1H-имидазол-2-ил, X = Cl, PF<sub>6</sub>, BF<sub>4</sub>, B(C<sub>6</sub>H<sub>3</sub>Cl<sub>2</sub>)<sub>4</sub>; [M( $k^3$ -NNN)Bn<sub>2</sub>], где M = Zr, Hf; NNN = N-((6-(1-H-бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин.
- Методами циклической вольтамперометрии и спектроскопии электронного парамагнитного резонанса установлено, что фторидный комплекс [Ni(k<sup>3</sup>-PCN)F] имеет особый механизм электрохимического окисления с образованием безгаллоидных частиц никеля(III).
- Обнаружена высокая каталитическая активность полученных комплексов никеля (II) в процессе гомогенной олигомеризации этилена в присутствии метилалюмоксана в качестве сокатализатора, основными продуктами данного процесса являются линейные олефины фракций C<sub>4</sub>-C<sub>10</sub>.
- Установлено, что введение стерически загруженных заместителей в структуру лиганда пинцерных комплексов палладия значительно повышает их каталитическую активность в реакции кросс-сочетания Сузуки-Мияура по сравнению с известными аналогами.
- Впервые проведено электрохимическое генерирование *N*-гетероциклического карбенового комплекса никеля (II) ([Ni(k<sup>3</sup>-NNC<sub>c</sub>)<sub>2</sub>]<sup>2+</sup>), где NNC<sub>c</sub> = 3-(6-(1H-пиразол-1-ил)пиридин-2-ил)-1-(2,6-диизопропилфенил)-1H-имидазол-2-ил, образование которого доказано методом масс-спектрометрии.
- Обнаружена высокая каталитическая активность полученных комплексов циркония и гафния в процессе восстановления углекислого газа до метана в присутствии трис-(пентафторфенил)борана в качестве сокатализатора и различных силанов в качестве восстановителей. На примере комплекса гафния установлена структура каталитически активной формы комплекса, представляющая собой электрофильное

катионное производное  $[Hf(k^3-NNN)(Bn)]^+$ , где NNN = N-((6-(1-H-бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин.

# На защиту выносятся следующие положения:

- Синтез, исследование строения и свойств галогенидов никеля (II) на основе несимметричного пинцерного лиганда, содержащего дитретбутилфосфиновую и пиразолильную группы.
- Изучение каталитической активности несимметричных активированных метилалюмоксаном пинцерных комплексов никеля (II), содержащих дитретбутилфосфиновую и пиразолильную группы, в процессе олигомеризации этилена.
- Синтез и исследование строения комплексов палладия (II) и никеля (II) на основе пиразолил-пиридильного лиганда, содержащего стерически загруженный диизопропилфенильной группой *N*-гетероциклический карбеновый фрагмент.
- Изучение каталитической активности пиразолил-пиридильных комплексов палладия (II), содержащих стерически загруженный диизопропилфенильной группой *N*-гетероциклический карбеновый фрагмент, в реакции кросс-сочетания Сузуки-Мияура.
- Синтез и исследование строения комплексов циркония (IV) и гафния (IV) на основе несимметричного пинцерного бензимидазол-аминопиридильного лиганда.
- Изучение каталитической активности несимметричных пинцерных бензимидазолпиридиламидных комплексов циркония (IV) и гафния (IV) в процессе восстановления углекислого газа до метана в присутствии трис-(пентафторфенил)борана в качестве сокатализатора и различных силанов в качестве восстановителей.

#### Личный вклад автора.

Автором диссертационной работы самостоятельно проведен анализ литературных данных, экспериментальная часть работы, анализ и обработка данных физико-химических методов исследования. Также соискатель принимал участие в постановке цели работы и разработке плана исследований, обсуждении результатов и формулировке выводов, подготовке статей и тезисов докладов по теме диссертационной работы.

#### Степень достоверности результатов.

Достоверность исследования и его результатов подтверждается обширным экспериментальным материалом с использованием современных физико-химических методов анализа.

#### Апробация работы.

Материалы диссертации докладывались на Международной конференции "Металлоорганическая и координационная химия: Проблемы и достижения" (Нижний Новгород, 2015 г.), Международном симпозиуме по синтезу и катализу (Эвора, Португалия, 2017 г.), XX Всероссийской школе-конференции по органической химии (Казань, 2017 г.), Научной конференции "Динамические процессы в химии элементоорганических соединений" (Казань, 2018 г.), XXI Международном симпозиуме по гомогенному катализу (Амстердам, Нидерланды, 2018 г.), Международной конференции по металлоорганической химии (Нижний Новгород, 2019 г.).

# Публикации.

По результатам диссертационной работы опубликовано 7 статей в журналах, входящих в перечень, рекомендуемый ВАК.

# Структура и объем диссертации.

Диссертация изложена на 153 страницах, состоит из введения, 3 глав, выводов и списка литературы. Работа содержит 10 таблиц, 30 схем и 35 рисунков. Библиографический список насчитывает 240 ссылок.

# Соответствие диссертации паспорту специальности.

Диссертационная работа по своим целям, задачам, содержанию, научной новизне и методам исследования соответствует пунктам 1, 2, 3, 6 и 7 паспорта специальности 02.00.08 - Химия элементоорганических соединений.

Работа выполнена в лаборатории металлоорганических и координационных соединений Института органической и физической химии им. А.Е. Арбузова обособленного структурного подразделения Федерального государственного бюджетного учреждения науки «Федерального исследовательского центра «Казанского научного центра Российской академии наук» по теме Плана НИР (госзадания) ФИЦ КазНЦ РАН № 0217-2019-0002 "Создание интеллектуальных систем и функциональных материалов для нано- и биотехнологий, элементной базы наноэлектроники и оптоэлектроники, **устройств** преобразования и хранения энергии. Диагностика дисперсных систем, наночастиц и материалов, включая наноматериалы", номер госрегистрации: АААА-А18-118041760011-2 и при финансовой поддержке Российского Фонда Фундаментальных Исследований (гранты 18-33-00177-мол а, 19-33-90288–Аспиранты), № а также В Институте химии металлоорганических соединений (ІССОМ, Флоренция, Италия).

# ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность и практическая значимость работы, сформулирована цель и задачи исследования. В обзоре литературы (первая глава) рассмотрены общие подходы к синтезу металлоорганических комплексов пинцерного типа, их многообразие и применение в гомогенном катализе. Вторая глава представляет собой экспериментальную часть работы. Третья глава посвящена обсуждению собственных результатов исследования.

#### Синтез и структура несимметричных пинцерных лигандов

Исходя из анализа литературных данных, мы нацелились на синтез трех лигандных систем, содержащих различные донорные группы: PCN, NNC и NNN, где PCN = 1-(3-((ди-трет-бутилфосфино)метил)фенил)-1H-пиразол, NNC = 3-(6-(1H-пиразол-1-ил)пиридин-2-ил)-1-(2,6-диизопропилфенил)-1H-имидазол-3-иум, NNN = N-((6-(1-(этоксиметил) бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин и N-((6-(1-H-бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин.

# РС лиганд.

Схема 1 демонстрирует путь синтеза, используемый для получения пинцерного хорошими выходами, исходя коммерчески доступного лиганда 3 с ИЗ (3бромфенил)метанола. Бромидную группу заменили на пиразолильную под действием йодида меди, карбоната калия микроволнового облучения (250)BT) И В *N*-метилпирролидиноне (реакция i). Фосфиновую группу вводили путем превращения гидроксильной группы в более хорошо уходящую группу (реакция іі, бромирование) с последующим нуклеофильным замещением вводя фосфиновую группу (реакция ііі).

Пинцерный лиганд **3** был выделен в виде аналитически чистого и чувствительного к воздуху белого твердого вещества с суммарным выходом 48%. На спектре ЯМР <sup>31</sup>Р в CD<sub>2</sub>Cl<sub>2</sub> химический сдвиг атома фосфора наблюдается при 35.2 м.д.



Схема 1 – Синтез РСN лиганда **3**. Условия реакций: (i) пиразол, CuI, K<sub>2</sub>CO<sub>3</sub>, микроволновое облуч., NMP, 210 °C, 5 ч, 250 Вт; (ii) Br<sub>3</sub>CCO<sub>2</sub>Et, PPh<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, 20 °C, 0.5 ч; (iii) (<sup>t</sup>Bu)<sub>2</sub>PH, ацетон, 56 °C, 12 ч.

# NNС лиганд.

Уникальные свойства *N*-гетероциклических карбенов (NHC): их изолобальное сходство с фосфинами, низкая токсичность, сильно выраженные σ-донорные свойства и легко настраиваемые, варьируя заместители при азоте, электронные и стерические эффекты делают их незаменимыми лигандами в координационной химии. Исходя из этого нами был получен несимметричный пинцерный пиразолил пиридильный NNC лиганд (6). содержащий имидазолиевый фрагмент в качестве прекурсора *N*-гетероциклического карбена (Схема 2). На первой стадии синтеза (реакция і) было проведено монозамещение 2,6-дибромпиридина пиразолом под действием основания (<sup>t</sup>BuOK) в 1,4-диоксане с получением производного 4. Замещенный 2,6-диизопропилфенильной группой имидазол 5 был получен обработкой диизопропиланилина аммиаком и глиоксалем в метаноле (реакция іі). Соединения 4 и 5 являются ключевыми строительными блоками для получения NNC лиганда 6. Кватернизацию N-замещенного имидазола 5 проводили путем его плавления с бромпиридином 4 при 190 °C в запаянной ампуле в инертной атмосфере азота и выдерживания системы без перемешивания в этих условиях в течение семи дней (реакция ііі). Затем реакционную смесь растворяли в дихлорметане, из которого при добавлении большого избытка диэтилового эфира соль имидазолия 6 осаждается в виде светлокоричневых микрокристаллов с хорошим выходом (90%).



Схема 2 – Синтез NNC лиганда 6. Условия реакций: (i) <sup>*t*</sup>BuOK, диоксан, 100 °C, 48 ч; (ii) H<sub>2</sub>CO 35% в H<sub>2</sub>O, NH<sub>3</sub> 25% в H<sub>2</sub>O, MeOH, 70 °C; (iii) 190 °C, без растворителя, 7 д.



Рисунок 1 – Структура соединения **6** в кристалле. Тепловые эллипсоиды приведены с 50% вероятностью. Атомы водорода не приведены. На спектре ЯМР <sup>1</sup>Н соединения **6** наблюдается типичный сигнал имидазолиевого протона ( $\delta_H = 11.30 \text{ м.д.}$ ), соответствующий ему сигнал углерода ( $\delta_C = 151 \text{ м.д.}$ ) также наблюдается на спектре ЯМР <sup>13</sup>C{<sup>1</sup>H}. Также наблюдается появление двух хорошо разделенных сигналов в спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>C{<sup>1</sup>H}, приписываемых парам диастереотопных метильных групп изопропильного фрагмента.

Структура имидазолиевой соли **6** в кристалле представлена на рисунке 1. Соединение **6** кристаллизуется в пространственной группе P-1 с двумя молекулами на элементарную ячейку.

# NNN лиганды.

Исходя из анализа литературных данных, можно заключить, что несимметричные пинцерные системы, содержащие N-донорные группы приводят к получению высокореакционноспособных производных переходным металлов.

Схема 3 демонстрирует путь синтеза, используемый для получения пинцерных бензоимидазольного и N-этоксиметилбензоимидазолзамещенного аминопиридиновых лигандов **11a** и **11b** с хорошими выходами. Исходные 1-(этоксиметил)бензимидазол (7) и 2бром-6-(1,3-диоксолан-2-ил)пиридин были получены в граммовых количествах по литературным методикам и выделены в виде аналитически чистых соединений после хроматографической очистки. Из них получено соединение **8** посредством катализируемой комплексом палладия реакции кросс-сочетания Негиши в присутствии безводного ZnCl<sub>2</sub> в качестве транс-металлирующего агента (реакция і, выход 93%). Для селективного снятия кислотолабильных ацетальной и N-этоксиметильной защитных групп применяли две различные методики. Снятие защитной группы с формильной группы достигается обработкой соединения **8** избытком трифторуксусной кислоты с получением соединения **9a** (реакция ii). Напротив, обработка более сильной соляной кислотой привела к полному удалению обеих защитных групп (**9b**) (реакция iii). После нейтрализации реакционных смесей соединения **9a** и **9b** выделяли в виде микрокристаллических белых веществ и использовали для последующих стадий реакции.

Дальнейшая кислотно-катализируемая конденсация соединений 9а и 9b с 2,6диизопропиланилином (реакция iv, получение соединений 10a и 10b) с последующей обработкой NaCNBH<sub>3</sub>/CH<sub>3</sub>COOH привела к получению NNN лигандов 11а и 11b (реакция v) с 79 и 81% выходами соответственно. Оба лиганда были получены в виде белых микрокристаллов после перекристаллизации из холодного метанола (11а) или хроматографической очистки (11b) и хранились в инертной атмосфере (азот) перед использованием на последующих стадиях. Соединение 11а показывает хорошую растворимость в относительно широком диапазоне полярных и неполярных ароматических углеводородов. Наоборот, 11b лишь только умеренно растворим в толуоле и бензоле, тогда как он достаточно растворим в ТГФ и в галогенированных углеводородах (бромбензол, CH<sub>2</sub>Cl<sub>2</sub>). Обе лигандные системы практически нерастворимы в неполярных алифатических углеводородах (пентан или гексан). На спектре ЯМР<sup>1</sup>Н соединения 11а сигнал атома водорода аминной NH-группы наблюдается при 3.86 м.д., тогда как для лиганда 11b наблюдается смещение сигнала данного протона к 3.97 м.д. Сигнал атома водорода бензимидазольной NH-группы наблюдается при 10.48 м.д. (соединение **11b**).



Схема 3 – Синтез NNN лигандов **11а** и **11b**. Условия реакций: (i) <sup>*n*</sup>BuLi, ZnCl<sub>2</sub>, кат. Pd(dba)<sub>2</sub>/PPh<sub>3</sub>, TГФ, 85 °C 4 дня; (ii) CF<sub>3</sub>COOH, 3ч, 70°C; (iii) HCl 2.5 M, 12ч, 85°C; (iv) 2,6-<sup>*i*</sup>Pr(C<sub>6</sub>H<sub>3</sub>)-NH<sub>2</sub>, HCOOH, MeOH, 12 ч, 20°C; (v) NaCNBH<sub>3</sub>, CH<sub>3</sub>COOH, MeOH/TГФ, 3ч, 50°C.

Таким образом, был получен ряд несимметричных пинцерных лигандов, обладающих различным набором жестких (азотсодержащие) и мягких (ди-трет-бутилфосфиновая и *N*-гетероциклическая карбеновая) донорных групп. Мы предположили, что PCN и NNC лиганды **3** и **6**, содержащие мягкие основания, согласно теории мягких и жестких кислот и оснований Пирсона, будут предпочтительно образовывать комплексы с мягкими кислотами, которыми являются ионы поздних переходных металлов, такие как ионы никеля (II) и палладия (II). Тогда как для NNN лигандов **11a** и **11b**, содержащих жесткие основания, предпочтительней комплексообразование с ионами ранних переходных металлов, например, циркония (IV) и гафния (IV).

# Синтез и структура несимметричных пинцерных комплексов переходных металлов

#### Пинцерные комплексы никеля и палладия на основе PCN и NNC лигандов.

Действительно, на основе PCN лиганда 3 были получены несимметричные пинцерные комплексы никеля (II) с различными атомами галогена в координационной сфере [Ni(PCN)X] [X = F (12), Cl (13), Br (14), I (15)]. Причем комплексы 13-15 были получены циклометаллированием лиганда 3 с соответствующими солями никеля (II) – безводными дигалогенидами никеля NiX<sub>2</sub> (Схема 4) в толуоле. Триэтиламин был использован для нейтрализации образующегося в ходе реакции побочного продукта HX с образованием (NEt<sub>3</sub>H)X аммониевой соли, которая выпадала в осадок. А фторидный комплекс 12 был получен из хлоридного комплекса 13 взаимодействием с фторидом таллия в метаноле.

Комплексы 12-15 были выделены в виде стабильных на воздухе желтых порошков и охарактеризованы различными физико-химическими методами. В  $CD_2Cl_2$  <sup>1</sup>H химический сдвиг кислого протона пиразола следует возрастающей тенденции при переходе от 12 ( $\delta_H = 7.58 \text{ м.д.}$ ) к 13 ( $\delta_H = 7.86 \text{ м.д.}$ ), 14 ( $\delta_H = 8.13 \text{ м.д.}$ ) и 15 ( $\delta_H = 8.47 \text{ м.д.}$ ) в соответствии с уменьшенным мезомерным эффектом в ряду F > Cl > Br > I. Такая же тенденция наблюдается в химических сдвигах ЯМР <sup>31</sup>Р координированного атома фосфора ( $\delta_P = 86.1$ , 87.3, 88.7 и 91.7 м.д. для 12, 13, 14 и 15 соответственно).



Схема 4 – Синтез несимметричных пинцерных РСN комплексов никеля 12-15.

Комплексы 12 и 15 кристаллизуются в пространственной группе  $P2_1/n$  с четырьмя молекулами на элементарную ячейку, тогда как 13 и 14 изоструктурны и кристаллизуются в пространственной группе  $P \ \overline{1}$ , с двумя молекулами на элементарную ячейку. Во всех случаях металлический центр имеет плоско-квадратную координационную геометрию (Рисунок 2), причем галогенидный лиганд занимает транс-положение относительно ипсо углерода пинцерного лиганда. Атом фосфора и один атом азота из пиразольного кольца (транс-положение относительно друг друга) завершают координационную сферу металла. Также стоит отметить межмолекулярные короткие контакты С–Н…Х с участием метиленового фрагмента и *трет*-бутильных групп лиганда.



Рисунок 2 – Структуры комплексов **12-15** в кристалле. Тепловые эллипсоиды приведены с 50% вероятностью. Атомы водорода не приведены.

Синтез *N*-гетероциклических комплексов палладия (II) с NNC лигандом 6 и различными противоионами представлен на схеме 5. Обработка соединения 6 оксидом  $(Ag_2O)$ используется для активации соли имидазолия серебра с получением соответствующего *N*-гетероциклического карбенового комплекса серебра. Дальнейшее трансметаллирование с использованием PdCl<sub>2</sub>(PhCN)<sub>2</sub> в качестве прекурсора палладия приводит к получению N-гетероциклического карбенового комплекса палладия 16a с выходом 88%, из которого далее реакцией ионного обмена (обработкой раствора комплекса 16а в ацетонитриле солью серебра или натрия с необходимым анионом) получали комплексы 16b-16d (Схема 5). Комплексы 16a-16d были охарактеризованы в растворе с помощью ЯМР-спектроскопии (<sup>1</sup>Н и <sup>13</sup>С{<sup>1</sup>H} ЯМР для 16а-16d; <sup>31</sup>Р{<sup>1</sup>H} ЯМР для 16b и <sup>11</sup>В{<sup>1</sup>H} ЯМР для **16с** и **16d**). Свидетельством генерации *N*-гетероциклических карбеновых комплексов является исчезновение типичного сигнала имидазолиевого протона ( $\delta_{\rm H} = 11.30$ м.д.) в спектре ЯМР <sup>1</sup>Н вместе с появлением типичного углеродного пика ( $\delta_{\rm C}$  около 154 м.д.) в спектрах ЯМР  ${}^{13}C{}^{1}H$  комплексов **16а-16d** приписанных к *ипсо* углероду.





Рисунок 3 – Структура соединения **16d** в кристалле. Тепловые эллипсоиды приведены с 50% вероятностью. Атомы водорода не приведены

Для комплексов **16а-16d** также наблюдается появление двух хорошо разделенных сигналов в спектрах ЯМР <sup>1</sup>H и <sup>13</sup>C{<sup>1</sup>H}, приписываемых парам диастереотопных метильных групп изопропильного фрагмента. Комплекс **16d**, содержащий более объемный и слабо координирующийся анион  $B(C_6H_3Cl_2)\overline{4}$ , был выделен в виде игл, пригодных для рентгеноструктурного анализа. Соединение **16d** кристаллизуется в пространственной группе  $P2_1/c$  с 4 молекулами на элементарную ячейку (Рисунок 3). Координационная геометрия металлического центра является искаженной плоско-квадратной.

Получить NNC комплекс никеля по методике, используемой для синтеза палладиевых NNC комплексов, не удалось. Исходя из этого нами была предпринята попытка электрохимического синтеза данного комплекса.



Рисунок 4 – ЦВА-кривая имидазолиевой соли **6** в ацетонитриле в присутствии <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> (0.1 M) (рабочий электрод – СУ, v = 50 мB/c). Развертка потенциала от 0.00 B до –2.20 B, далее до +1.40 B далее до 0.00 B.

Исследование электрохимических свойств И образования механизма *N*-гетероциклических карбеновых комплексов никеля проводилось при использовании метода ЦВА, препаративного электролиза и масс-спектрометрии (ESI-MS). На ЦВА-кривой имидазолиевой соли 6 (Рисунок 4) наблюдается один необратимый пик восстановления С<sub>1</sub>, который соответствует образованию карбеновой частицы NNC<sub>c</sub> и молекулярного водорода. Нами было обнаружено, что электролиз раствора соединения 6 в ацетонитриле в ячейке без разделения электродных пространств (Рисунок 5), с использованием растворимого никелевого анода в качестве источника ионов никеля (II) приводит к образованию Nгетероциклического карбенового комплекса никеля 17. содержащего лва Nгетероциклических карбеновых лиганда ([Ni(NNCc)2]<sup>2+</sup>) по реакции, представленной на

схеме 6. Установлено, что образующийся в реакционной смеси комплекс никеля является нестабильным и разлагается со временем, и, как следствие, его выделение из рабочего раствора не представляется возможным.



Рисунок 5 – Мониторинг препаративного электролиза имидазолиевой соли **6** в ацетонитриле методом масс-спектрометрии (ESI-MS). Справа приведены теоретическое и экспериментальное (ESI-MS) изотопные распределения для комплекса [Ni(NNC<sub>c</sub>)<sub>2</sub>]<sup>2+</sup>.



Схема 6 – Электрохимическое генерирование NNC комплекса никеля  $[Ni(NNC_c)_2]^{2+}$  (17).

# Пинцерные комплексы циркония и гафния на основе NNN лигандов.

При взаимодействии NNN лиганда **11а**, содержащего N-этоксиметильную защитную группу в бензимидазольном фрагменте, с эквимольным количеством прекурсора четырехвалентного металла [Zr(Bn)<sub>4</sub> или Hf(Bn)<sub>4</sub>] происходит образование тридентатных моноанионных комплексов **18a** и **19a** (Схема 7). Спектр <sup>1</sup>Н ЯМР соединения **18a** демонстрирует мультиплет при 1.72 м.д. (4H), приписываемый одной метиленовой группе из трех бензильных фрагментов вместе с одним протоном из каждого из других диастереотопных фрагментов -CH<sub>2</sub>Ph (системы AB). Дублет при  $\delta_{\rm H} = 2.78$  м.д. (2H) завершает системы AB. Для **19a** представлена идентичная картина [ $\delta_{\rm H} = 1.40$  м.д. (4H) и 2.39 м.д. (2H)]. Все другие сигналы четко идентифицированы и хорошо изолированы друг от друга в спектрах <sup>1</sup>Н ЯМР. Темно-красные чувствительные к воздуху и влаге порошки комплексов **18a** и **19a** были выделены с выходами 90 и 88% соответственно.



Схема 7 – Синтез несимметричных пинцерных NNN комплексов циркония и гафния **18а**, **18b**, **19a**, **19b**.

комплексов циркония и гафния **18a**, **18b**, **19a**, **19b**. приведены. Интересно отметить, что тридентатные дианионные комплексы Zr<sup>IV</sup> и Hf<sup>IV</sup> **18b** и **19b** были получены путем циклометаллированием лиганда **11b** с эквимольным количеством прекурсора четырехвалентного металла [Zr(Bn)<sub>4</sub> или Hf(Bn)<sub>4</sub>]. Обе реакции протекают в ТГФ при комнатной температуре, приводя к образованию красноватых растворов соединений **18b** и **19b** (Схема 7). Ход реакции контролировали с помощью <sup>1</sup>H ЯМРспектроскопии, которая показала, что полное исчезновение сигналов лиганда достигается за 1 час. Желто-оранжевые чувствительные к воздуху и влаге кристаллы **18b** и **19b** были выделены с выходами 80 и 88% соответственно.

Спектры <sup>1</sup>Н и <sup>13</sup>С{<sup>1</sup>H} ЯМР комплексов **18b** и **19b** демонстрируют четко различимые сигналы пар диастереотопных метиленовых групп бензильных лигандов [система AB при  $\delta_{\rm H} = 2.10/2.50$  м.д. (**18b**) и  $\delta_{\rm H} = 1.93/2.33$  м.д. (**19b**)] и узкий синглет для мостикового РуС*H*<sub>2</sub>N-фрагмента (**18b**:  $\delta_{\rm H} = 4.77$  м.д.; **19b**:  $\delta_{\rm H} = 5.10$  м.д.). Бензильные метиленовые атомы углерода являются изохронными и дают синглет при  $\delta_{\rm C} = 71.3$  (**18b**) и  $\delta_{\rm C} = 81.8$  м.д. (**19b**). Аналогично, мостиковые метиленовые группы между пиридиновыми кольцами и амидными фрагментами выглядят как узкие синглеты при  $\delta_{\rm C} = 66.5$  м.д. как для **18b**, так и для **19b**.

Комплексы 18а и 18b кристаллизуются в пространственной группе  $P2_1/c$ , ион циркония находится в центре искаженной октаэдрической координационной геометрии (Рисунок 6). В комплексах три атома азота лиганда и одна из метиленовых групп бензильных фрагментов лежат на экваториальной плоскости, в то время как апикальные позиции заняты остальными метиленовыми фрагментами бензильных группы, в случае 18b – вторая апикальная позиция занята атомом кислорода координированной молекулы ТГФ.

#### Каталитическая активность несимметричных пинцерных комплексов

# Пинцерные комплексы никеля на основе PCN лиганда.

Проведенный анализ литературных данных позволил заключить, что несимметричные пинцерные комплексы никеля на основе PCN лигандов успешно применяются в качестве прекурсоров каталитических систем для процессов олиго- и полимеризации ненасыщенных углеводородов.

Так, было обнаружено, что комплексы 12-15 при активации метилалюмоксаном, которая заключается в замене галогена на метильную группу и приводит к образованию вакантного координационного места в металлическом центре, проявляют хорошую каталитическую активность (с числом TOF =  $14 \times 10^3$  ч<sup>-1</sup>, таблица 1) в процессе олигомеризации этилена. Конверсию этилена рассчитывали на основании массы этилена, вступившего в реакцию (по приросту массы автоклава в ходе каталитического процесса и на основании данных анализа газовой хроматографии реакционной смеси с внутренним стандартом), а постоянную Шульца-Флори ( $\alpha$ ) определяли на основании среднего мольного соотношения С<sub>6</sub>-С<sub>16</sub>-фракций полученных олефинов. По результатам исследований установлено, что активированные комплексы 12-15 проявляют низкую селективность, с образованием олефинов фракций С<sub>4</sub>-С<sub>10</sub> в качестве основных продуктов процесса. Селективность по альфа-олефинам также оказалась низкой (34-59 %), что является первым примером применения PCN комплексов никеля в процессе олигомеризации этилена.

| N⁰ | Комплекс | <b>TOF</b> <sup>a</sup> × 10 <sup>-3</sup> | $\alpha^{\mathrm{b}}$ | Содержание олигомеров, <sup>с</sup> масс. |                     |                  |
|----|----------|--------------------------------------------|-----------------------|-------------------------------------------|---------------------|------------------|
|    |          |                                            |                       | $C_{4}-C_{10}$                            | $C_{12}$ - $C_{20}$ | C <sub>22+</sub> |
| 1  | 12       | 13.9                                       | 0.43                  | 88.8                                      | 10.8                | 0.4              |
| 2  | 13       | 13.9                                       | 0.47                  | 91.4                                      | 8.4                 | 0.2              |
| 3  | 14       | 14.6                                       | 0.40                  | 93.6                                      | 6.3                 | 0.1              |
| 4  | 15       | 13.9                                       | 0.56                  | 77.8                                      | 20.1                | 2.1              |

Таблица 1 – Каталитическая активность активированных комплексов **12-15** в процессе олигомеризации этилена.

Условия: количество прекатализатора 5 мкмоль; активатор – ММАО-12, 400 экв.; давление этилена 14 бар; растворитель - толуол (30 мл); температура 25 °С; время 35 минут. <sup>а</sup>Выражается как отношение количества (ммоль) прореагировавшего этилена (по данным ГХ-МС) на количество (ммоль) катализатора и время (ч). <sup>b</sup>a – показатель Шульца-Флори, вычисленный как среднее между мольными соотношениями (C<sub>n+2</sub>)/(C<sub>n</sub>). <sup>c</sup>Paccчитано по данным ГХ-МС.

#### Электрохимические свойства комплексов 12-15.

Стоит отметить, что метилалюмоксан является дорогостоящим и низкостабильным соединением, и поиск альтернативных путей активации подобных комплексов является актуальной задачей. Исходя из этого, нам было интересно изучить электрохимические свойства полученных пинцерных комплексов никеля для выяснения возможности электрохимической декоординации галогена с образованием вакантного места в металлическом центре.

Электрохимические свойства полученных комплексов **12-15** были исследованы с использованием методов циклической вольтамперометрии (Рисунок 7) и *in-situ* ЭПР-спектроэлектрохимии (Рисунок 8). В катодной области потенциалов на ЦВА-кривых комплексов **12-15** наблюдается пик необратимого восстановления C<sub>1</sub>, который не приводит

к образованию парамагнитных частиц (по данным ЭПР-спектроскопии). Как видно из полученных данных (Рисунок 7), потенциал восстановления изменяется в зависимости от природы галогена в структуре комплекса.





Рисунок 7 – ЦВА-кривые комплексов никеля **12-15** в ДМФА в присутствии <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> (0.1 M) (C =  $5 \times 10^{-4}$  M, рабочий электрод – CУ, v = 50 мB/c). Рисунок 8 – ЭПР-спектры для комплексов никеля **12-15** в ДМФА в присутствии <sup>*n*</sup>Bu<sub>4</sub>NBF<sub>4</sub> (0.1 M) (C = 5 × 10<sup>-4</sup> M) при E = 1.5 В для **12**, 0.8 В – **13** и **14**, 0.5 В – **15**).

Для исследования природы образующихся в результате электрохимического окисления частиц, было выполнено *in-situ* спектроэлектрохимическое исследование этих систем методом электронного парамагнитного резонанса. На основе полученных данных были предложены соответствующие схемы элекроокисления комплексов **12-15** (Схемы 8 и 9)

Так, при проведения электрохимического окисления комплексов 13 и 14 в электрохимической ячейке ЭПР (Рисунок 8) при потенциалах пика окисления A<sub>2</sub> было обнаружено образование в растворе частиц никеля (III) (g-фактор равен 2.177 для 13 и 2.150 для 14). Кроме того, было установлено, что после первого процесса переноса электронов продолжается последующая внутримолекулярная изомеризация с образованием частиц с g-фактором 2.240. Интересно отметить, что эта изомеризация протекает после выключения электрического тока, что свидетельствует о наличии последующего химического процесса.



Схема 8 – Предполагаемые механизмы электрохимического окисления комплексов никеля13 и 14.

Сравнительное *in-situ* ЭПР исследования электрохимического окисления комплексов **12** и **15** (Схема 9) позволяет заключить, что в ходе этого процесса образуются безгаллоидные комплексы никеля (III) (g = 2.188). В случае комплекса **12** образование данных частиц

протекает в растворе путем диспропорционирования электрохимически образованных биядерных комплексов никеля (III) с мостиковыми фрагментами Ni<sup>III</sup>(µ-F)<sub>2</sub>Ni<sup>III</sup>.



Схема 9 – Предполагаемые механизмы электрохимического окисления комплексов никеля **12** и **15**.

#### Пинцерные комплексы палладия на основе NNC лиганда.

Катализируемая палладиевыми комплексами реакция Сузуки-Мияура, безусловно, является одним из наиболее важных процессов образования связи углерод-углерод. Так, полученные комплексы палладия **16а-16d** были протестированы в реакции кросс-сочетания органических галогенидов с фенилборной кислотой.

В таблице 2 приведены результаты реакций кросс-сочетания выбранных арилгалогенидов с фенилбороновой кислотой, катализируемые комплексами **16a-16d**. Все реакции проводились в смеси растворителей ДМФА и H<sub>2</sub>O (10:1 по объёму) с использованием Cs<sub>2</sub>CO<sub>3</sub> в качестве основания в интервале температур 80–120 °C в зависимости от используемых реагентов. Для всех случаев загрузка катализатора составляла от 0.5 до 5.0 мол.%, ход реакции контролировали с помощью тонкослойной хроматографии (TCX) путем отбора проб реакционных смесей в разные моменты времени. Выбор реагентов был выполнен с целью сравнения каталитических характеристик комплексов **16a-16d** в модельном процессе кросс-сочетания с аналогичными, но менее стерически загруженными комплексами NHC-Pd из литературы. При оптимизированных условиях эксперимента (загрузка катализатора и температура реакции) все комплексы **16a-16d** показали хорошие и превосходные характеристики в реакции Сузуки-Мияура с фенилбороновой кислотой. Все конверсии были определены с помощью ГХ-МС анализа.

Как видно из таблицы 2, однозначно проследить тенденцию между выходом (или частотой оборота катализатора TOF) и природой анионного противоиона, сложно. В данных условиях Cl,  $PF_6$  и  $BF_4$  в качестве противоионов комплекса палладия показали лишь незначительное влияние на TOF и эти небольшие различия находятся в пределах статистической ошибки эксперимента. Напротив, более сильное отклонение было замечено почти для всех каталитических испытаний с комплексом **16d**. Было обнаружено, что более объемный и слабо координирующийся анион  $B(C_6H_3Cl_2)_4$  оказывает сильное влияние на TOF катализатора (понижает его значение) при идентичных условиях. Такое поведение

комплекса **16d** можно объяснить снижением концентрации каталитически активных частиц [Pd(0)] в растворе. Такое уменьшение может быть связано с инертностью **16d** (или одного из его аддуктов) к восстановлению. Действительно, свободная ионная пара, образованная в **16d** в сочетании с легкой декоординацией пиразольного фрагмента, может индуцировать образование димерных форм [(NNC)Pd( $\mu$ -Cl)<sub>2</sub>Pd(NNC)], потенциально не склонных к восстановлению до частиц Pd(0) при данных условиях эксперимента.

Таблица 2 – Реакции Сузуки-Мияура, катализируемые комплексами 16а-16d.

|                                           | <b>16а-16d</b> кат.             |         |
|-------------------------------------------|---------------------------------|---------|
| $\Delta r_{\rm VI} = X + PhB(OH)_{\rm o}$ | Cs <sub>2</sub> CO <sub>3</sub> | Arvl-Ph |
|                                           | DMF/H <sub>2</sub> O, $\Delta$  | ,       |

| № Aryl-X        | Arvl-X                 | Кат.,            | Время, | Πησπνκτ          | Выход <sup>а</sup> , % | TOF <sup>b</sup> , |
|-----------------|------------------------|------------------|--------|------------------|------------------------|--------------------|
|                 | <b>M y-</b> 2 <b>X</b> | моль%            | Ч      | продукі          |                        | Ч <sup>-1</sup>    |
| 1               | • Br                   | <b>16a</b> (0.5) | 2      |                  | 98                     | 98.0               |
| 2               |                        | <b>16b</b> (0.5) | 2      | 🔿 Ph             | 99                     | 99.0               |
| 3               |                        | <b>16c</b> (0.5) | 2      |                  | 98                     | 98.2               |
| 4 <sup>c</sup>  | MeO                    | Кат. (3)         | 2      | MeO              | 95                     | 15.8               |
| 5               |                        | <b>16d</b> (0.5) | 2      |                  | 93                     | 93.2               |
| 6               |                        | <b>16a</b> (3)   | 5      |                  | 99                     | 6.66               |
| 7               | Br                     | <b>16b</b> (3)   | 5      | Ph               | 98                     | 6.58               |
| 8               | H <sub>2</sub> N       | <b>16c</b> (3)   | 5      | H <sub>2</sub> N | 93                     | 6.23               |
| 9               |                        | <b>16d</b> (3)   | 5      |                  | 81                     | 5.41               |
| 10              |                        | <b>16a</b> (3)   | 5      | Ph               | 89                     | 5.93               |
| 11              | Br                     | <b>16b</b> (3)   | 5      |                  | 92                     | 6.14               |
| 12              | но                     | <b>16c</b> (3)   | 5      | но               | 89                     | 5.95               |
| 13              |                        | <b>16d</b> (3)   | 5      |                  | 73                     | 4.89               |
| 14 <sup>d</sup> | ∧ Cl                   | <b>16a</b> (5)   | 5      | ∽ Ph             | 84                     | 3.38               |
| 15 <sup>d</sup> |                        | <b>16b</b> (5)   | 5      |                  | 89                     | 3.55               |
| 16 <sup>d</sup> | Ť.                     | <b>16c</b> (5)   | 5      | Щ.               | 82                     | 3.28               |
| 17 <sup>d</sup> | 0                      | <b>16d</b> (5)   | 5      | 0                | 65                     | 2.61               |
| 18 <sup>d</sup> |                        | <b>16a</b> (5)   | 5      | ^                | 23                     | 0.91               |
| 19 <sup>d</sup> | CI                     | <b>16b</b> (5)   | 5      |                  | 19                     | 0.75               |
| 20 <sup>d</sup> |                        | <b>16c</b> (5)   | 5      |                  | 21                     | 0.85               |
| 21 <sup>d</sup> |                        | <b>16d</b> (5)   | 5      | ~                | 18                     | 0.71               |

Условия: Aryl-X, 1.0 ммоль; фенилборная кислота, 1.5 ммоль;  $Cs_2CO_3$ , 2.0 ммоль; растворитель ДМФА/H<sub>2</sub>O (V/V = 10:1), 5 мл; температура: 80 °С. "По данным ГХ-МС. <sup>b</sup>Выражается как отношение количества (ммоль) прореагировавшего арилгалогенида (по данным ГХ-МС) на количество (ммоль) катализатора и время (ч). <sup>c</sup>3 моль% катализатора: [{k<sup>3</sup>-N,N,C<sup>NHC(nBu)</sup>}Pd<sup>II</sup>Cl]+BF<sub>4</sub>-из литературы. <sup>d</sup>Температура 120 °С.

Отдельно стоит отметить реакцию кросс-сочетания фенилбороновой кислоты с дезактивированным 4-метоксибромбензолом (таблица 2, эксперименты 1–3, 5). При 0.5 мол.% загрузке катализаторов **16а-16с** достигается почти полная конверсия субстрата после выдерживания системы в течение двух часов при перемешивании при 80 °C. Зенг и его

коллеги использовали близкий по структуре к комплексам **16а-16d** пиразолил пиридильный комплекс палладия, содержащий менее стерически загруженный NHC-фрагмент (таблица 2, эксперимент 4). В данном случае выход дифенильного продукта составил 95% при использовали 3 мол.% катализатора. В случае комплекса **16c** стерическое затруднение, создаваемое 2,6-диизопропильным фрагментом, повышает эффективность катализатора, обеспечивая полное превращение субстрата до дифенильного производного уже при загрузке катализатора 0.5 мол.% (таблица 2, эксперимент 3 по сравнению с 4).

Реакция кросс-сочетания фенилборной кислоты с активированным 4ацетилхлорбензолом (таблица 2, эксперименты 14–17) привела к хорошей конверсии субстрата только с 5 мол.% загрузке катализаторов 16а-16d и при более высокой температуре реакции (120 °C). Производные хлоридов классически проявляют более низкую реакционную способность, чем их бромидные аналоги. Это было также подтверждено полученными в низкими конверсиями, реакции кросс-сочетания относительно нереакционноспособного фенилхлорида (таблица 2, эксперименты 18–21).

Пинцерные комплексы циркония и гафния на основе NNN лигандов.

В качестве примера применения высокоэлектрофильных координационных соединений на основе циркония в гомогенном катализе Мацуо и Кавагути впервые описали использование феноксидного комплекса  $k^3$ -{O<sup>-</sup>,O,O<sup>-</sup>}Zr<sup>IV</sup>(Bn)<sub>2</sub> в сочетании с сильной кислотой Льюиса трис-(пентафторфенил)бораном B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> для процесса тандемного восстановления CO<sub>2</sub> до CH<sub>4</sub>, в котором мы и решили протестировать полученные нами комплексы **18b**, **19b**. Однако авторами было обнаружено, что сами комплексы, равно как и B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> не проявляют каталитической активности в данном процессе. А их совместное присутствии в реакционной смеси приводит к успешному восстановлению углекислого газа до метана.

Для изучения процесса активации данных комплексов было проведено взаимодействие соединения **19b** с эквимольным количеством борана  $B(C_6F_5)_3$  я ЯМР ампуле, используя CD<sub>2</sub>Cl<sub>2</sub> в качестве растворителя. Спектр <sup>1</sup>Н ЯМР реакционной смеси указывает на образование моноалкил-катионных форм комплекса (**19b**\*) (Схема 10), в то время как спектр <sup>11</sup>B{<sup>1</sup>H} ЯМР подтвердил присутствие бензил-бората в качестве противоиона ( $\delta_B = -12.5$  м.д.).



Схема 10 – Активация комплекса 19b бораном В(С<sub>6</sub>F<sub>5</sub>)<sub>3</sub>.

Комплексы **18b** и **19b** были использованы в качестве прекатализаторов в сочетании с В(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> для процесса восстановления CO<sub>2</sub> различными органическими силанами. Стоит отметить, что комплексы **18a** и **19a** оказались не активными в данном процессе. Предварительные каталитические испытания были проведены в ЯМР ампуле с **18b**/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> в качестве модельной каталитической системы с использованием изотопно обогащенного <sup>13</sup>CO<sub>2</sub> в бензоле-*d*<sub>6</sub> с PhMe<sub>2</sub>SiH в качестве восстановителя. В процессе протекания данного взаимодействия на спектре ЯМР <sup>13</sup>С наблюдается исчезновение сигналов, соответствующих CO<sub>2</sub> и силану и одновременное образование конечного побочного продукта силоксана (PhMe<sub>2</sub>Si)<sub>2</sub>O. В то же время, наблюдается появление сигнала, соответствующего <sup>13</sup>CH<sub>4</sub> [ $\delta_{H} = 0.16 \text{ м.д.}$  (д, 4H, <sup>1</sup>*J*<sub>HC</sub> = 125.0 Гц, <sup>13</sup>CH<sub>4</sub>);  $\delta_{C{H}} = \delta_{C} = -4.22 \text{ м.д.}$  (квинт., <sup>1</sup>*J*<sub>CH</sub> = 125.0 Гц, <sup>13</sup>CH<sub>4</sub>)]. Полученные ЯМР спектры также были использованы для выявления образования промежуточных продуктов реакции (интермедиатов). В частности, два сигнала при  $\delta_{C} = 84.9$  (т, <sup>1</sup>*J*<sub>CH</sub> = 162.3 Гц, <sup>13</sup>CH<sub>2</sub>) и 171.2 м.д. (д, <sup>1</sup>*J*<sub>CH</sub> = 210.3 Гц, H<sup>13</sup>CO<sub>2</sub>) были отнесены к бис(силил)ацеталю (PhMe<sub>2</sub>SiO<sup>13</sup>CH<sub>2</sub>OSiMe<sub>2</sub>Ph) и его прекурсору силилформиату (H<sup>13</sup>CO<sub>2</sub>SiMe<sub>2</sub>Ph). Карбоксильный резонанс последнего смещен более чем на 10 м.д. по сравнению с его ожидаемым значением  $\delta_{C}$ . Такой сдвиг предполагает образование металлокомплекса силилформиата [Zr<sup>IV</sup>]···O=<sup>13</sup>COHSiMe<sub>2</sub>Ph.

Предполагаемый механизм восстановления углекислого газа с 18b/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> в качестве модельной каталитической системы представлен на схеме 11. На первом этапе CO<sub>2</sub> активируется электрофильным катионным производным комплекса 18b\* и реагирует с двумя эквивалентами силана (PhMe<sub>2</sub>SiH) с образованием одного эквивалент продукта частичного восстановления PhMe<sub>2</sub>SiOCH<sub>2</sub>OSiMe<sub>2</sub>Ph (Кат. цикл 1, схема 11) и регенерацией катализатора. Кислота Льюиса B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> обеспечивает каталитическую активацию силанов с образованием соединения PhMe<sub>2</sub>Si····H···B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, которое завершает восстановление бис(силил)ацеталя до CH<sub>4</sub> (Кат. цикл 2, схема 11) с образованием силоксана PhMe<sub>2</sub>SiOSiMe<sub>2</sub>Ph в качестве побочного продукта.



Схема 11 – Предполагаемый механизм восстановления углекислого газа каталитической системой **18b**/B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> с использованием PhMe<sub>2</sub>SiH в качестве восстановителя.

Чтобы получить количественную оценку эффективности катионных производных комплексов **18b** и **19b** в реакции восстановления CO<sub>2</sub>, было проведено систематическое исследование с каждым катализатором с различными силанами с использованием 20 мл реактора из нержавеющей стали с тефлоновой камерой. Результаты каталитических

испытаний приведены в таблице 3. Наиболее высокую каталитическую активность в данном процессе показала система  $18b/B(C_6F_5)_3$  с числом TOF 272 ч<sup>-1</sup>, что практически дважды превышает заявленное для литературного аналога на основе феноксидного лиганда.

| N⁰             | Катализатор                                                   | Силан <sup>а</sup> | <b>Время,</b><br>ч |                                                                                           | $\mathbf{TOF}^{b}_{Y^{-1}},$ | CH <sub>4</sub> <sup>c</sup> |
|----------------|---------------------------------------------------------------|--------------------|--------------------|-------------------------------------------------------------------------------------------|------------------------------|------------------------------|
|                |                                                               |                    |                    | Si-продукт                                                                                |                              | выход,<br>%                  |
| 1              | <b>18b</b> или <b>19b</b>                                     | Α                  | 24                 | -                                                                                         | -                            | -                            |
| 2              | <b>B</b> (C <sub>6</sub> <b>F</b> <sub>5</sub> ) <sub>3</sub> | Α                  | 24                 | -                                                                                         | -                            | -                            |
| 3              | 18b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | Α                  | 0.5                | (PhMe <sub>2</sub> Si) <sub>2</sub> O                                                     | 434                          | 52                           |
| 4              | 18b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | Α                  | 1.5                | (PhMe <sub>2</sub> Si) <sub>2</sub> O                                                     | 272                          | 98                           |
| 5              | $19b/B(C_6F_5)_3$                                             | Α                  | 4                  | (PhMe <sub>2</sub> Si) <sub>2</sub> O                                                     | 55                           | 53                           |
| 6 <sup>d</sup> | 18b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | В                  | 48                 | (Et <sub>2</sub> MeSi) <sub>2</sub> O                                                     | 8.6                          | 99                           |
| 7 <sup>d</sup> | $19b/B(C_6F_5)_3$                                             | В                  | 48                 | (Et <sub>2</sub> MeSi) <sub>2</sub> O                                                     | 7.1                          | 82                           |
| 8              | 18b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | С                  | 36                 | $\begin{array}{c} (Et_{3}Si)_{2}O\\ (Et_{3}SiO)_{2}CH_{2}\end{array}$                     | 6.0                          | 6                            |
| 9              | 18b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | С                  | 60                 | $\begin{array}{c} (Et_{3}Si)_{2}O\\ (Et_{3}SiO)_{2}CH_{2}\end{array}$                     | 6.6                          | 17                           |
| 10             | 19b/B(C <sub>6</sub> F <sub>5</sub> ) <sub>3</sub>            | С                  | 48                 | (Et <sub>3</sub> Si) <sub>2</sub> O<br>(Et <sub>3</sub> SiO) <sub>2</sub> CH <sub>2</sub> | 5.9                          | 12                           |

Таблица 3 – Восстановление СО<sub>2</sub>, катализируемое комплексами 18b и19b.

Условия: комплекс **18b** или **19b** (8 мкмоль, 0.24 моль % на Si-H связь),  $B(C_6F_5)_3$  (8.8 мкмоль, M/B = 1/1.1, 0.26 моль % на Si-H связь),  $CO_2$  (1 атм, 295 K, 20 мл, 0.83 ммоль), толуол (2.5 мл), 295 K. <sup>a</sup>Силаны: PhMe<sub>2</sub>SiH (A); Et<sub>2</sub>MeSiH (B); Et<sub>3</sub>SiH (C). <sup>b</sup>TOF рассчитан как отношение количества прореагировавших связей Si H (ммоль) на количество катализатора (ммоль) на время (ч). <sup>c</sup>Pacсчитан как: [(количество прореагировавшего силана (ммоль)/4) / (количество CO<sub>2</sub> (ммоль))]\*100. <sup>d</sup>12 мкмоль  $B(C_6F_5)_3, M/B = 1/1.5, 0.35$  мол.% на связь Si-H.

Чувствительность каталитической системы к стерической загруженности силана также отражается на частоте оборота катализатора ТОF. Так, взаимодействие системы  $18b/B(C_6F_5)_3$  с силаном  $Et_2MeSiH(B)$  приводят к образованию смеси силоксанов ( $Et_2MeSi)_2O$  и ( $Et_2MeSiO)_2CH_2$  в соотношении 72:27 через 48 часов (таблица 3, эксперимент 6). Других промежуточных соединений согласно данным ГХ-МС анализа не обнаружено.

Для гафниевого комплекса **19b** в сочетании с В(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> во всех случаях значение TOF оказалось немного ниже, чем для соответствующего циркониевого аналога **18b**.

Таким образом, можно сделать вывод, что значения TOF, полученные для системы  $18b/B(C_6F_5)_3$  в сочетании с различными силанами, являются одними из самых высоких из известных в литературе для процесса тандемного восстановления углекислого газа до метана.

# ЗАКЛЮЧЕНИЕ

- 1. Синтезированы новые несимметричные пинцерные комплексы никеля (II), палладия (II), циркония (IV) и гафния (IV) состава  $[Ni(k^3-PCN)X]$ , где  $PCN = 1-(3-((ди-трет-бутилфосфино)метил)фенил)-1H-пиразол, X = F, Cl, Br, I; <math>[Pd(k^3-NNC_c)Cl]X$ , где  $NNC_c = 3-(6-(1H-пиразол-1-ил)пиридин-2-ил)-1-(2,6-диизопропилфенил)-1H-имидазол-2-ил, X = Cl, PF<sub>6</sub>, BF<sub>4</sub>, B(C<sub>6</sub>H<sub>3</sub>Cl<sub>2</sub>)<sub>4</sub>; <math>[M(k^3-NNN)Bn_2]$ , где M = Zr, Hf; NNN = N-((6-(1-H-бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин. Строение полученных соединений установлено различными физико-химическими методами, включая метод рентгеноструктурного анализа.
- Установлено, что полученные несимметричные пинцерные комплексы никеля (II) [Ni(k<sup>3</sup>-PCN)X], где PCN = 1-(3-((ди-трет-бутилфосфино)метил)фенил)-1Н-пиразол, X = F, Cl, Br, I; являются прекурсорами эффективных каталитических систем в процессе олигомеризации этилена, основными продуктами которой являются линейные олефины фракций C<sub>4</sub>-C<sub>10</sub>.
- 3. Найдено, что повышение стерической загруженности полученных несимметричных пинцерных *N*-гетероциклических карбеновых комплексов палладия [Pd( $k^3$ -NNC<sub>c</sub>)Cl]<sup>+</sup>X, где NNC<sub>c</sub> = 3-(6-(1H-пиразол-1-ил)пиридин-2-ил)-1-(2,6-диизопропилфенил)-1H-имидазол-2-ил, X = Cl, PF<sub>6</sub>, BF<sub>4</sub>, B(C<sub>6</sub>H<sub>3</sub>Cl<sub>2</sub>)<sub>4</sub>; повышает их каталитическую активность в реакциях кросс-сочетания Сузуки-Мияура в сравнении с известными аналогами.
- 4. Впервые показано, что полученные несимметричные пинцерные комплексы циркония (IV) и гафния (IV) [M( $k^3$ -NNN)Bn<sub>2</sub>], где M = Zr, Hf; NNN = N-((6-(1-Hбензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин; являются эффективными прекурсорами гомогенных катализаторов восстановления углекислого газа до Процесс протекает присутствии метана. В трис-(пентафторфенил)борана в качестве сокатализатора, и различных органических силанов, используемых в качестве восстановителей.
- 5. Впервые на примере комплексов гафния обнаружена и охарактеризована активная форма металлоорганического катализатора процесса восстановления углекислого газа до метана, представляющая собой катионное производное [Hf(*k*<sup>3</sup>-NNN)(Bn)]<sup>+</sup>, где NNN = N-((6-(1-H-бензимидазол-2-ил)пиридин-2-ил)метил)-2,6-диизопропиланилин.

# Основное содержание работы изложено в следующих публикациях:

- Gafurov, Z.N. Unsymmetrical Pyrazole-Based PCN Pincer Ni II Halides: Reactivity and Catalytic Activity in Ethylene Oligomerization / Z.N. Gafurov, G.E. Bekmukhamedov, A.A. Kagilev, A.O. Kantyukov, I.F. Sakhapov, I.K. Mikhailov, K.R. Khayarov, R.B. Zaripov, D.R. Islamov, K.S. Usachev, L. Luconi, A. Rossin, G. Giambastiani, D.G. Yakhvarov // Journal of Organometallic Chemistry. – 2020. – V.912. – P.121163.
- Luconi, L. Halogen Bonding Interactions and Electrochemical Properties of Unsymmetrical Pyrazole Pincer Ni II Halides: a Peculiar Behaviour of the Fluoride Complex (PCN)NiF/L. Luconi, C. Garino, P. Cerreia Vioglio, R. Gobetto, M. Chierotti, D. Yakhvarov, Z. Gafurov, V. Morozov, I. Sakhapov, A. Rossin, G. Giambastiani // ACS Omega. – 2019. – V.4(1). – P.1118-1129.
- Luconi, L. Benzoimidazole-pyridylamido zirconium and hafnium alkyl complexes as homogeneous catalysts for the tandem carbon dioxide hydrosilylation to methane/ L. Luconi, A. Rossin, G. Tuci, Z. Gafurov, D.M. Lyubov, A.A. Trifonov, S. Cicchi, H. Ba, C. Pham-Huu, D. Yakhvarov, G. Giambastiani // ChemCatChem. – 2019. – V.11(1). – P.495-510.
- Luconi, L. Palladium(II) pyrazolyl–pyridyl complexes containing a sterically hindered *N*-heterocyclic carbene moiety for the Suzuki-Miyaura cross-coupling reaction / L. Luconi, Z.N. Gafurov, A. Rossin, G. Tuci, O. G. Sinyashin, D.G. Yakhvarov, G. Giambastiani // Inorganica Chimica Acta. 2018. V.470. P.100-105.
- Гафуров, З.Н. Классификация и методы получения пинцерных комплексов никеля / З. Н. Гафуров, А.А. Кагилев, А.О. Кантюков, А.А. Балабаев, О.Г. Синяшин, Д.Г. Яхваров // Известия Академии наук. Серия химическая. – 2018. – Т.67(3). – С.385-394.
- Gafurov, Z.N. Electrochemical methods for synthesis of organoelement compounds and functional materials / Z.N. Gafurov, O.G. Sinyashin, D.G. Yakhvarov // Pure and Applied Chemistry. – 2017. – V. 89(8). – P. 1089-1103.
- 7. Гафуров, З.Н. *N*-Гетероциклические карбеновые комплексы никеля и палладия: синтез и каталитическое применение в реакциях сочетания / З.Н. Гафуров, А.О. Кантюков, А.А. Кагилев, А.А. Балабаев, О.Г. Синяшин, Д.Г. Яхваров // Известия Академии наук. Серия химическая. 2017. Т.66(9). С.1529-1535.
- Gafurov, Z.N. Pincer type nickel (II) complexes: synthesis and catalytic activity / Z.N. Gafurov, I.F. Sakhapov, D.G. Yakhvarov // International conference "Organometallic Chemistry Around the World" (7th Razuvaev Lectures). Book of Abstracts. September 16–21, Nizhny Novgorod. 2019. P.23.
- Kagilev, A.A. Electrochemical properties of new pincer nickel (II) halides / A. A. Kagilev, Z.N. Gafurov, L. Luconi, G. Giambastiani, D.G. Yakhvarov // International conference "Organometallic Chemistry Around the World" (7th Razuvaev Lectures). Book of Abstracts. September 16–21, Nizhny Novgorod. – 2019. – P.97.

- Kantyukov, A.O. Electrochemical synthesis of new *N* heterocyclic carbene complexes of nickel / A.O. Kantyukov, **Z.N. Gafurov**, D.G. Yakhvarov // International conference "Organometallic Chemistry Around the World" (7th Razuvaev Lectures). Book of Abstracts. September 16–21, Nizhny Novgorod. – 2019. – P.98.
- 11. Гафуров, З.Н. Синтез и структура новых лигандов пинцерного и карбенового типов / З.Н. Гафуров, Л. Лукони, Д. Джамбастиани, Д.Г. Яхваров // Сборник тезисов научной конференции "Динамические процессы в химии элементоорганических соединений". Ноябрь 6-9, Казань. 2018. С.81.
- 12. Балабаев, А.А. Электрохимические свойства новых никельорганических комплексов пинцерного типа / А.А. Балабаев, З.Н. Гафуров, Л. Лукони, Д. Джамбастиани, Д.Г. Яхваров // Сборник тезисов научной конференции "Динамические процессы в химии элементоорганических соединений". Ноябрь 6-9, Казань. – 2018. – С.66.
- 13. Кагилев, А.А. Синтез и структура новых никельорганических комплексов пинцерного типа / А.А. Кагилев, З.Н. Гафуров, Л. Лукони, Д. Джамбастиани, Д.Г. Яхваров // Сборник тезисов научной конференции "Динамические процессы в химии элементоорганических соединений". Ноябрь 6-9, Казань. – 2018. – С.107.
- 14. Кантюков, А.О. Электрохимический синтез новых *N*-Гетероциклических карбеновых комплексов никеля / А.О. Кантюков, **З.Н. Гафуров**, Л. Лукони, Д. Джамбастиани, Д.Г. Яхваров // Сборник тезисов научной конференции "Динамические процессы в химии элементоорганических соединений". Ноябрь 6-9, Казань. – 2018. – С.111.
- 15. Giambastiani, G. Pyridylamido Zirconium and Hafnium Alkyl Complexes as Catalysts for the Tandem Carbon Dioxide Hydrosilylation to Methane / G. Giambastiani, L. Luconi, A. Rossin, D. Yakhvarov, A.A. Trifonov, Z. Gafurov, D.D. Lyubov, G. Tuci // Book of Abstracts. Arbuzov Memorial conference "Dynamic processes in the chemistry of organoelement compounds". November 6-9, Kazan. – 2018.– P.4.
- 16. Гафуров, З.Н. Новые хелатные *N*-гетероциклические карбеновые комплексы палладия и никеля: синтез, структура и свойства / З.Н. Гафуров, Л. Лукони, Д. Джамбастиани, О.Г. Синяшин, Д.Г. Яхваров // Сборник тезисов XX Всероссийской молодежной школы-конференции по органической химии. Сентябрь 18-21, Казань. – 2017. – С.28.
- 17. Gafurov, Z. Palladium(II) pyrazolyl–pyridyl complexes containing a sterically hindered *N*-Heterocyclic carbene moiety for the Suzuki-Miyaura cross-coupling reaction / Z. Gafurov, L. Luconi, A. Rossin, G. Tuci, O. Sinyashin, D. Yakhvarov, G. Giambastiani // International Symposium on Synthesis and Catalysis. Book of Abstracts. September 5-8, Evora, Portugal. 2017. P.291.